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Abstract
In a previous article, the first two authors have proved that the existence of zero
modes of Pauli operators is a rare phenomenon; inter alia, it is proved that for
|B| ∈ L3/2(R3), the set of magnetic fields B which do not yield zero modes
contains an open dense subset of [L3/2(R3)]3. Here the analysis is taken further,
and it is shown that Sobolev, Hardy and Cwikel–Lieb–Rosenbljum (CLR)
inequalities hold for Pauli operators for all magnetic fields in the aforementioned
open dense set.

PACS numbers: 0230J, 0365G

1. Introduction

The Pauli operator is formally defined by

PA =
{
σ ·

(
1

i
∇ + A

)}2

≡
3∑

j=1

{
σj

(
1

i
∂j + Aj

)}2

(1)

where A = (A1, A2, A3) is a vector potential which is such that curlA = B, the magnetic
field, and σ ≡ (σ1, σ2, σ3) is the triple of Pauli matrices

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (2)

Expression (1) defines a non-negative self-adjoint operator in [L2(R3)]2; its precise definition
will be given in section 2.

It is well known that there exist magnetic fields B for which PA has zero modes, i.e.
eigenvectors corresponding to an eigenvalue at 0 (see [2]). An important consequence is that
there cannot be Sobolev and Hardy-type inequalities associated with such magnetic fields.
Another important implication is that for such magnetic fields there cannot be an analogue
of the Cwikel–Lieb–Rosenblum (CLR) inequality for the number of negative eigenvalues of
PA+V in terms of someLp norm of the scalar potentialV ; this follows since any small negative
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perturbation V would produce negative eigenvalues, irrespective of the size of this norm of
V . However, in [1] it is proved that the existence of zero modes is a rather rare phenomenon:
specifically, it is proved that, with nul denoting nullity,

(i) for |B| ∈ L3/2(R3), nul PtA = 0 except for a finite number of values of t in any compact
subset of [0,∞),

(ii)
{
B : nul PA = 0, curlA = B and |B| ∈ L3/2(R3)

}
contains an open dense subset of[

L3/2(R3)
]3

.

In this Letter, we use the analysis in [1] to prove that

PA � δ(B) SA (3)

where δ(B) is a measure of the distance from B to the set of fields which yield zero modes,
and SA is the magnetic Schrödinger operator. Consequences of (3) are Sobolev, Hardy and
CLR inequalities for PA for all magnetic fields B in

[
L3/2(R3

]3
which lie in the sets described

in (i) and (ii) above.

2. Preliminaries

The formal operator (1) can be written as

PA = SA + σ · B B = curlA (4)

where SA is the formal magnetic Schrödinger operator

SA =
(

1

i
∇ + A

)2

I2 ≡
3∑

j=1

(
1

i
∂j + Aj

)2

I2 (5)

where I2 is the 2 × 2 identity matrix and σ · B is the Zeeman term. A gauge transformation
A �→ A + df does not affect nul PA and so our results will be independent of gauge. We
denote [L2(R3)]2 by H, and its usual inner product and norm by

(f, g) =
∫
R3

f · ḡ dx ‖f ‖ = (f, f )1/2

where f · ḡ is the C
2-inner product. We shall assume throughout that

Aj ∈ L2
loc(R

3) j = 1, 2, 3 (6)

and

|B| ∈ L3/2(R3). (7)

Also, the following facts from [1] will be needed:

• The operators PA, SA are defined to be the Friedrichs extensions of (4), (5) respectively
on

[
C∞

0 (R3)
]2

. They have the same form domain, namely Q(SA), the completion of
[C∞

0 (R3)]2 with respect to the norm

‖ϕ‖1,A =
{∥∥∥∥

(
1

i
∇ + A

)
ϕ

∥∥∥∥
2

+ ‖ϕ‖2

}1/2

. (8)

• SA and the form sum P := PA + |B| have no zero modes, and so have dense domain and
range in H. Also, D(P1/2) = D(S

1/2
A ) = Q(SA).
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• Let H1
A, H

1
B be the completion of Q(SA) with respect to the norms

‖φ‖H1
A

:= ‖S1/2
A φ‖ (9)

‖φ‖H
1
B

:= ‖P
1/2φ‖ (10)

respectively. We may choose an A to satisfy divA = 0 and |A| ∈ L3(R3) (see [1, lemma
2.2]) and in this case we have the continuous embeddings

H
1
B ↪→ H1

A ↪→ H1
0 ↪→ [

L6(R3)
]2
. (11)

Here, H1
0 is the space H1

A with Aj = 0, j = 1, 2, 3; it is not a subspace of H but, on
account of the Hardy inequality, can be identified with the functional space{

u ∈ [
H1

loc(R
3)

]2
: ‖u‖2

H1
0

+
∥∥ u

| · |
∥∥2

< ∞}
(12)

and ‖ · ‖H1
0

is equivalent to the norm
{
‖u‖2

H1
0

+
∥∥ u

| · |
∥∥2

}1/2

. (13)

• The map P
−1/2 extends to a unitary map

U : H −→ H
1
B U = P

−1/2 on Range(P1/2) (14)

and
S := |B|1/2U : H −→ H

is continuous, where f �→ |B|1/2f : H
1
B −→ H is continuous. In fact, SS∗ is compact.

• And finally

PAu = 0 ⇔ F(U−1u) = 0 (15)

where F = 1 − SS∗. Note that in (15) it is understood that

u ∈ D(PA) ⊂ H
1
B.

Thus nul PA � nul F , with equality if and only if

Fφ = 0 ⇒ Uφ ∈ H ∩ H
1
B. (16)

3. The main result

Theorem. Suppose that B is such that F = 1 − SS∗ has no zero mode, and set

δ(B) := inf
‖f ‖=1,Uf∈H∩H

1
B

∥∥[1 − S∗S]f
∥∥2

. (17)

Then δ(B) > 0 and

PA � δ(B)SA. (18)

It follows that:

(i) (Sobolev embedding) for all φ ∈ D(P
1/2
A ) = Q(SA),

∥∥P
1/2
A φ

∥∥2 � δ(B)

γ

∥∥φ∥∥2
[L6(R3)]2 (19)

where γ is the norm of the embedding H1
0 ↪→ [

L6(R3)
]2;
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(ii) (Hardy inequality) for all φ ∈ Q(SA),

∥∥P
1/2
A φ

∥∥2 � δ(B)

4

∥∥∥∥ φ

| · |
∥∥∥∥

2

; (20)

(iii) (CLR inequality) for V− ∈ L3/2(R3), the number N(PA +V ) of negative eigenvalues −λn

of PA + V satisfies

N(PA + V ) � c[δ(B)]−3/2
∫
R3

V
3/2
− dx (21)

where c is the best constant in the CLR inequality for SA. A consequence of (21) is that
∑

λν
n � c[δ(B)]−3/2

∫
R3

V
ν+3/2
− dx (22)

for any ν � 0.

Proof. If F has no zero mode, the compact operator SS∗ on H does not have eigenvalue 1 and
hence neither does S∗S, since

σ(SS∗) \ {0} = σ(S∗S) \ {0}.

Hence δ(B) > 0, and for any f ∈ H with Uf ∈ H ∩ H
1
B

δ(B)‖f ‖2 � ‖(1 − S∗S)f ‖2

= ‖f ‖2 − 2(S∗Sf, f ) + ‖S∗Sf ‖2.

Let f = P
1/2φ. Then Uf = φ and Sf = |B|1/2φ from (14), and so

δ(B)‖P
1/2φ‖2 � ‖P

1/2φ‖2 − 2‖|B|1/2φ‖2 + ‖S∗|B|1/2φ‖2

= ‖P
1/2
A φ‖2 − ‖|B|1/2φ‖2 + ‖S∗|B|1/2φ‖2 (23)

since P = PA + |B| in the form sense. We also have for any h ∈ Range(P1/2)

‖Sh‖ = ‖|B|1/2
P

−1/2h‖ � ‖h‖

since P � |B|, and this implies ‖S‖ � 1 in view of the range of P
1/2 being dense in H. Thus

‖S∗‖ = ‖S‖ � 1 and from (23)

δ(B)‖P
1/2φ‖2 � ‖P

1/2
A φ‖2

whence PA � δ(B)P � δ(B)SA. The conclusions (i)–(iii) are consequences of these
inequalities for SA. �

Remark 1. If any one of the inequalities (19)–(21) is satisfied, PA has no zero modes. Whether
or not nul PA = 0 implies that δ(B) > 0 is not clear. Note that the infimum in (17) is taken
over the subspace of H in which PA and F have common nullity.

Remark 2. Let S in (14) be denoted by SB and FB = 1 − SBS∗
B . The results in [1] which

yield (i) and (ii) in section 1 are:

(iii) for |B| ∈ L3/2(R3), nul FtB = 0 except for a finite number of values of t in any compact
subset of [0,∞),

(iv) {B : nul FB = 0, |B| ∈ L3/2(R3)} is an open dense subset of [L3/2(R3)]3.
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Thus (18)–(22) represent the typical situation, and fail to hold only for exceptional magnetic
fields B.

It follows from (11) (see [1, lemma 3.1]) that ‖S‖2 � γ 2
0 ‖|B|‖L3/2(R3), where γ0 is the

norm of H
1
B ↪→ [

L6(R3)
]2
. Hence, if γ 2

0 ‖B‖L3/2(R3 < 1,

δ(B) � 1 − γ 2
0 ‖B‖L3/2(R3)

and from (21)

N(PA + V ) � c[1 − γ 2
0 ‖B‖L3/2(R3 ]−3/2 ‖V−‖3/2

L3/2(R3 . (24)
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